Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38695217

RESUMO

The achievements of the Green Revolution in meeting the nutritional needs of a growing global population have been won at the expense of unintended consequences for the environment. Some of these negative impacts are now threatening the sustainability of food production through the loss of pollinators and natural enemies of crop pests, the evolution of pesticide resistance, declining soil health and vulnerability to climate change. In the search for farming systems that are sustainable both agronomically and environmentally, alternative approaches have been proposed variously called 'agroecological', 'conservation agriculture', 'regenerative' and 'sustainable intensification'. While the widespread recognition of the need for more sustainable farming is to be welcomed, this has created etymological confusion that has the potential to become a barrier to transformation. There is a need, therefore, for objective criteria to evaluate alternative farming systems and to quantify farm sustainability against multiple outcomes. To help meet this challenge, we reviewed the ecological theories that explain variance in regulating and supporting ecosystem services delivered by biological communities in farmland to identify guiding principles for management change. For each theory, we identified associated system metrics that could be used as proxies for agroecosystem function. We identified five principles derived from ecological theory: (i) provide key habitats for ecosystem service providers; (ii) increase crop and non-crop habitat diversity; (iii) increase edge density: (iv) increase nutrient-use efficiency; and (v) avoid extremes of disturbance. By making published knowledge the foundation of the choice of associated metrics, our aim was to establish a broad consensus for their use in sustainability assessment frameworks. Further analysis of their association with farm-scale data on biological communities and/or ecosystem service delivery would provide additional validation for their selection and support for the underpinning theories.

3.
Sci Total Environ ; 860: 160471, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36435258

RESUMO

Cropping decisions affect the nature, timing and intensity of agricultural management strategies. Specific crop rotations are associated with different environmental impacts, which can be beneficial or detrimental. The ability to map, characterise and accurately predict rotations enables targeting of mitigation measures where most needed and forecasting of potential environmental risks. Using six years of the national UKCEH Land Cover® plus: Crops maps (2015-2020), we extracted crop sequences for every agricultural field parcel in Great Britain (GB). Our aims were to first characterise spatial patterns in rotation properties over a national scale based on their length, type and structural diversity values, second, to test an approach to predicting the next crop in a rotation, using transition probability matrices, and third, to test these predictions at a range of spatial scales. Strict cyclical rotations only occupy 16 % of all agricultural land, whereas long-term grassland and complex-rotational agriculture each occupy over 40 %. Our rotation classifications display a variety of distinctive spatial patterns among rotation lengths, types and diversity values. Rotations are mostly 5 years in length, short mixed crops are the most abundant rotation type, and high structural diversity is concentrated in east Scotland. Predictions were most accurate when using the most local spatial approach (spatial scaling), 5-year rotations, and including long-term grassland. The prediction framework we built demonstrates that our crop predictions have an accuracy of 36-89 %, equivalent to classification accuracy of national crop and land cover mapping using earth observation, and we suggest this could be improved with additional contextual data. Our results emphasise that rotation complexity is multi-faceted, yet it can be mapped in different ways and forms the basis for further exploration in and beyond agronomy, ecology, and other disciplines.


Assuntos
Agricultura , Produtos Agrícolas , Agricultura/métodos , Ecologia , Reino Unido , Produção Agrícola
4.
Ecol Appl ; 33(1): e2743, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107148

RESUMO

There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers.


Assuntos
Malus , Polinização , Abelhas , Animais , Ecossistema , Insetos , Frutas , Produtos Agrícolas , Flores
5.
Basic Appl Ecol ; 58: 2-14, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35115899

RESUMO

Sown wildflower areas are increasingly recommended as an agri-environmental intervention measure, but evidence for their success is limited to particular insect groups or hampered by the challenges of establishing seed mixes and maintaining flower abundance over time. We conducted a replicated experiment to establish wildflower areas to support insect pollinators in apple orchards. Over three years, and across 23 commercial UK orchards with and without sown wildflowers, we conducted 828 transect surveys across various non-crop habitats. We found that the abundance of flower-visiting solitary bees, bumblebees, honeybees, and beetles was increased in sown wildflower areas, compared with existing non-crop habitats in control orchards, from the second year following floral establishment. Abundance of hoverflies and other non-syrphid flies was increased in wildflower areas from the first year. Beyond the effect of wildflower areas, solitary bee abundance was also positively related to levels of floral cover in other local habitats within orchards, but neither local nor wider landscape-scale context affected abundance of other studied insect taxa within study orchards. There was a change in plant community composition on the sown wildflower areas between years, and in patterns of flowering within and between years, showing a succession from unsown weedy species towards a dominance of sown species over time. We discuss how the successful establishment of sown wildflower areas and delivery of benefits for different insect taxa relies on appropriate and reactive management practices as a key component of any such agri-environment scheme.

6.
J Environ Manage ; 265: 110550, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292173

RESUMO

Insects provide vital ecosystem services to agricultural systems in the form of pollination and natural pest control. However, there are currently widespread declines in the beneficial insects which deliver these services (i.e. pollinators and 'natural enemies' such as predators and parasitoids). Two key drivers of these declines have been the expansion of agricultural land and intensification of agricultural production. With an increasing human population requiring additional sources of food, further changes in agricultural land use appear inevitable. Identifying likely trajectories of change and predicting their impacts on beneficial insects provides a scientific basis for making informed decisions on the policies and practices of sustainable agriculture. We created spatially explicit, exploratory scenarios of potential changes in the extent and intensity of agricultural land use across Great Britain (GB). Scenarios covered 52 possible combinations of change in agricultural land cover (i.e. agricultural expansion or grassland restoration) and intensity (i.e. crop type and diversity). We then used these scenarios to predict impacts on beneficial insect species richness and several metrics of functional diversity at a 10km (hectad) resolution. Predictions were based on species distribution models derived from biological records, comprising data on 116 bee species (pollinators) and 81 predatory beetle species (natural enemies). We identified a wide range of possible consequences for beneficial insect species richness and functional diversity as result of future changes in agricultural extent and intensity. Current policies aimed at restoring semi-natural grassland should result in increases in the richness and functional diversity of both pollinators and natural enemies, even if agricultural practices remain intensive on cropped land (i.e. land-sparing). In contrast, any expansion of arable land is likely to be accompanied by widespread declines in richness of beneficial insects, even if cropping practices become less intensive (i.e. land-sharing), although effects of functional diversity are more mixed.


Assuntos
Agricultura , Ecossistema , Animais , Abelhas , Biodiversidade , Humanos , Insetos , Polinização , Reino Unido
7.
Ecol Lett ; 21(12): 1821-1832, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30223295

RESUMO

Understanding spatial variation in the structure and stability of plant-pollinator networks, and their relationship with anthropogenic drivers, is key for maintaining pollination services and mitigating declines. Constructing sufficient networks to examine patterns over large spatial scales remains challenging. Using biological records (citizen science), we constructed potential plant-pollinator networks at 10 km resolution across Great Britain, comprising all potential interactions inferred from recorded floral visitation and species co-occurrence. We calculated network metrics (species richness, connectance, pollinator and plant generality) and adapted existing methods to assess robustness to sequences of simulated plant extinctions across multiple networks. We found positive relationships between agricultural land cover and both pollinator generality and robustness to extinctions under several extinction scenarios. Increased robustness was attributable to changes in plant community composition (fewer extinction-prone species) and network structure (increased pollinator generality). Thus, traits enabling persistence in highly agricultural landscapes can confer robustness to potential future perturbations on plant-pollinator networks.


Assuntos
Agricultura , Ecossistema , Plantas , Polinização , Reino Unido
8.
J Environ Manage ; 206: 1145-1154, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30029348

RESUMO

The importance of Cultural Ecosystem Services (CES) to human wellbeing is widely recognised. However, quantifying these non-material benefits is challenging and consequently they are often not assessed. Mapping approaches are increasingly being used to understand the spatial distribution of different CES and how this relates to landscape characteristics. This study uses an online Public Participation Geographic Information System (PPGIS) to elicit information on outdoor locations important to respondents in Wiltshire, a dynamic lowland landscape in southern England. We analysed these locations in a GIS with spatial datasets representing potential influential factors, including protected areas, land use, landform, and accessibility. We assess these characteristics at different spatial and visual scales for different types of cultural engagement. We find that areas that are accessible, near to urban centres, with larger views, and a high diversity of protected habitats, are important for the delivery of CES. Other characteristics including a larger area of woodland and the presence of sites of historic interest in the surrounding landscape were also influential. These findings have implications for land-use planning and the management of ecosystems, by demonstrating the benefits of high quality ecological sites near to towns. The importance of maintaining and restoring landscape features, such as woodlands, to enhance the delivery of CES were also highlighted.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Sistemas de Informação Geográfica , Ecologia , Inglaterra , Humanos
9.
Sci Total Environ ; 610-611: 666-677, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28826113

RESUMO

A wide variety of tools aim to support decision making by modelling, mapping and quantifying ecosystem services. If decisions are to be properly informed, the accuracy and potential limitations of these tools must be well understood. However, dedicated studies evaluating ecosystem service models against empirical data are rare, especially over large areas. In this paper, we report on the national-scale assessment of a new ecosystem service model for nutrient delivery and retention, the InVEST Nutrient Delivery Ratio model. For 36 river catchments across the UK, we modelled total catchment export of phosphorus (P) and/or nitrogen (N) and compared model outputs to measurements derived from empirical water chemistry data. The model performed well in terms of relative magnitude of nutrient export among catchments (best Spearman's rank correlation for N and P, respectively: 0.81 and 0.88). However, there was wide variation among catchments in the accuracy of the model, and absolute values of nutrient exports frequently showed high percentage differences between modelled and empirically-derived exports (best median absolute percentage difference for N and P, respectively: ±64%, ±44%). The model also showed a high degree of sensitivity to nutrient loads and hydrologic routing input parameters and these sensitivities varied among catchments. These results suggest that the InVEST model can provide valuable information on nutrient fluxes to decision makers, especially in terms of relative differences among catchments. However, caution is needed if using the absolute modelled values for decision-making. Our study also suggests particular attention should be paid to researching input nutrient loadings and retentions, and the selection of appropriate input data resolutions and threshold flow accumulation values. Our results also highlight how availability of empirical data can improve model calibration and performance assessment and reinforce the need to include such data in ecosystem service modelling studies.

10.
Nature ; 543(7646): 547-549, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297711

RESUMO

Insect pollinators such as bumblebees (Bombus spp.) are in global decline. A major cause of this decline is habitat loss due to agricultural intensification. A range of global and national initiatives aimed at restoring pollinator habitats and populations have been developed. However, the success of these initiatives depends critically upon understanding how landscape change affects key population-level parameters, such as survival between lifecycle stages, in target species. This knowledge is lacking for bumblebees, because of the difficulty of systematically finding and monitoring colonies in the wild. We used a combination of habitat manipulation, land-use and habitat surveys, molecular genetics and demographic and spatial modelling to analyse between-year survival of family lineages in field populations of three bumblebee species. Here we show that the survival of family lineages from the summer worker to the spring queen stage in the following year increases significantly with the proportion of high-value foraging habitat, including spring floral resources, within 250-1,000 m of the natal colony. This provides evidence for a positive impact of habitat quality on survival and persistence between successive colony cycle stages in bumblebee populations. These findings also support the idea that conservation interventions that increase floral resources at a landscape scale and throughout the season have positive effects on wild pollinators in agricultural landscapes.


Assuntos
Abelhas/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura , Animais , Abelhas/classificação , Comportamento Alimentar , Feminino , Hibernação , Masculino , Polinização , Estações do Ano , Análise de Sobrevida
11.
Ecol Appl ; 26(3): 726-39, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27411246

RESUMO

Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that management of landscape composition and configuration has the potential to reduce foraging distances across a range of bumble bee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumble bees and enhancing crop pollination services.


Assuntos
Abelhas/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Animais , Abelhas/genética , Monitoramento Ambiental , Genótipo , Especificidade da Espécie
12.
Mol Ecol ; 23(14): 3384-95, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24980963

RESUMO

Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS  = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes.


Assuntos
Abelhas/genética , Ecossistema , Fluxo Gênico , Genética Populacional , Agricultura , Animais , Conservação dos Recursos Naturais , Inglaterra , Feminino , Variação Genética , Endogamia , Desequilíbrio de Ligação , Repetições de Microssatélites , Análise de Sequência de DNA
13.
Conserv Biol ; 23(1): 142-50, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18798853

RESUMO

Selecting suitable nature reserves is a continuing challenge in conservation, particularly for target groups that are time-consuming to survey, species rich, and extinction prone. One such group is the parasitoid Hymenoptera, which have been excluded from conservation planning. If basic characteristics of habitats or vegetation could be used as reliable surrogates of specific target taxa, this would greatly facilitate appropriate reserve selection. We identified a range of potential habitat indicators of the species richness of pimpline parasitoid communities (Hymenoptera: Ichneumonidae: Pimplinae, Diacritinae, Poemeniinae) and tested their efficiency at capturing the observed diversity in a group of small woodlands in the agricultural landscape of the Vale of York (United Kingdom). Eight of the 18 vegetation-based reserve-selection strategies were significantly better at parasitoid species inclusion than random selection of areas. The best strategy maximized richness of tree species over the entire reserve network through complementarity. This strategy omitted only 2-3 species more (out of 38 captured in the landscape as a whole) than selections derived from the parasitoid survey data. In general, strategies worked equally well at capturing species richness and rarity. Our results suggest that vegetation data as a surrogate for species richness could prove an informative tool in parasitoid conservation, but further work is needed to test how broadly applicable these indicators may be.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Árvores , Vespas/fisiologia , Animais , Especificidade da Espécie , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...